Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Neuroendocrinol ; 71: 101099, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37647946

RESUMO

It is well established that retinoic acid receptors (RARs) function as nuclear receptors that control gene expression in response to binding of the ligand retinoic acid (RA). However, some studies have proposed that RAR-alpha (RARa) controls synaptic plasticity via non-genomic effects outside the nucleus, i.e. effects on mRNA translation of GluA1, a sub-unit of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor. In order to support this non-genomic mechanism, studies have reported RARa knockout mice or treatment with pharmacological levels of RA and RAR antagonists to propose that RARa is required to control normal synaptic plasticity. A major shortcoming of the non-genomic hypothesis is that there have been no mutational studies showing that RARa can bind the GluA1 mRNA to control GLUA1 protein levels in a non-genomic manner. Also, without a genetic study that removes the endogenous ligand RA, it is impossible to conclude that RARa and its ligand RA control synaptic plasticity through a non-genomic signaling mechanism.


Assuntos
Receptores do Ácido Retinoico , Tretinoína , Camundongos , Animais , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Ligantes , Tretinoína/metabolismo , Tretinoína/farmacologia , Receptor alfa de Ácido Retinoico , Plasticidade Neuronal/fisiologia
4.
J Mol Endocrinol ; 69(4): T59-T67, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35593389

RESUMO

Vitamin A (retinol) is an important nutrient for embryonic development and adult health. Early studies identified retinoic acid (RA) as a metabolite of retinol, however, its importance was not apparent. Later, it was observed that RA treatment of vertebrate embryos had teratogenic effects on limb development. Subsequently, the discovery of nuclear RA receptors (RARs) revealed that RA controls gene expression directly at the transcriptional level through a process referred to as RA signaling. This important discovery led to further studies demonstrating that RA and RARs are required for normal embryonic development. The determination of RA function during normal development has been challenging as RA gain-of-function studies often lead to conclusions about normal development that conflict with RAR or RA loss-of-function studies. However, genetic loss-of-function studies have identified direct target genes of endogenous RA/RAR that are required for normal development of specific tissues. Thus, genetic loss-of-function studies that eliminate RARs or RA-generating enzymes have been instrumental in revealing that RA signaling is required for normal early development of many organs and tissues, including the hindbrain, posterior body axis, somites, spinal cord, forelimbs, heart, and eye.


Assuntos
Tretinoína , Vitamina A , Animais , Proteínas de Transporte/metabolismo , Feminino , Gravidez , Receptores do Ácido Retinoico/genética , Transdução de Sinais/genética , Tretinoína/metabolismo , Vitamina A/metabolismo
5.
J Neurol Disord ; 10(1)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35382260

RESUMO

Retinoic acid (RA) is the active form of vitamin A that functions as a ligand for nuclear RA receptors that directly bind genomic control regions to regulate gene expression. However, some studies have suggested that RA may have nongenomic effects outside of the nucleus, particularly with regard to synaptic plasticity. Recent results demonstrate that treatment with pharmacological levels of RA can alter synaptic plasticity which may be useful to treat neurological diseases. However, these results and those reported by others have not shown that endogenous RA is normally required for synaptic plasticity (or any other nongenomic effect) as there are no reports of genetic loss of function studies that remove endogenous RA in adult brain. The implication is that pharmacological levels of RA result in nongenomic effects, some of which may be helpful to treat certain diseases but in other cases this may cause unwanted side effects.

6.
Cells ; 11(3)2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35159132

RESUMO

Retinoic acid (RA) functions as an essential signal for development of the vertebrate eye by controlling the transcriptional regulatory activity of RA receptors (RARs). During eye development, the optic vesicles and later the retina generate RA as a metabolite of vitamin A (retinol). Retinol is first converted to retinaldehyde by retinol dehydrogenase 10 (RDH10) and then to RA by all three retinaldehyde dehydrogenases (ALDH1A1, ALDH1A2, and ALDH1A3). In early mouse embryos, RA diffuses to tissues throughout the optic placode, optic vesicle, and adjacent mesenchyme to stimulate folding of the optic vesicle to form the optic cup. RA later generated by the retina is needed for further morphogenesis of the optic cup and surrounding perioptic mesenchyme; loss of RA at this stage leads to microphthalmia and cornea plus eyelid defects. RA functions by binding to nuclear RARs at RA response elements (RAREs) that either activate or repress transcription of key genes. Binding of RA to RARs regulates recruitment of transcriptional coregulators such as nuclear receptor coactivator (NCOA) or nuclear receptor corepressor (NCOR), which in turn control binding of the generic coactivator p300 or the generic corepressor PRC2. No genes have been identified as direct targets of RA signaling during eye development, so future studies need to focus on identifying such genes and their RAREs. Studies designed to learn how RA normally controls eye development in vivo will provide basic knowledge valuable for determining how developmental eye defects occur and for improving strategies to treat eye defects.


Assuntos
Retinaldeído , Tretinoína , Animais , Camundongos , Organogênese , Retina/metabolismo , Retinaldeído/metabolismo , Tretinoína/metabolismo , Tretinoína/farmacologia , Vitamina A
7.
J Clin Invest ; 131(4)2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33586683

RESUMO

The relationship between adiposity and metabolic health is well established. However, very little is known about the fat depot, known as paracardial fat (pCF), located superior to and surrounding the heart. Here, we show that pCF remodels with aging and a high-fat diet and that the size and function of this depot are controlled by alcohol dehydrogenase 1 (ADH1), an enzyme that oxidizes retinol into retinaldehyde. Elderly individuals and individuals with obesity have low ADH1 expression in pCF, and in mice, genetic ablation of Adh1 is sufficient to drive pCF accumulation, dysfunction, and global impairments in metabolic flexibility. Metabolomics analysis revealed that pCF controlled the levels of circulating metabolites affecting fatty acid biosynthesis. Also, surgical removal of the pCF depot was sufficient to rescue the impairments in cardiometabolic flexibility and fitness observed in Adh1-deficient mice. Furthermore, treatment with retinaldehyde prevented pCF remodeling in these animals. Mechanistically, we found that the ADH1/retinaldehyde pathway works by driving PGC-1α nuclear translocation and promoting mitochondrial fusion and biogenesis in the pCF depot. Together, these data demonstrate that pCF is a critical regulator of cardiometabolic fitness and that retinaldehyde and its generating enzyme ADH1 act as critical regulators of adipocyte remodeling in the pCF depot.


Assuntos
Tecido Adiposo/enzimologia , Álcool Desidrogenase/metabolismo , Mitocôndrias Cardíacas/metabolismo , Obesidade/enzimologia , Pericárdio/enzimologia , Tecido Adiposo/patologia , Álcool Desidrogenase/deficiência , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Metabolômica , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/patologia , Obesidade/genética , Obesidade/patologia , Pericárdio/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Retinaldeído/metabolismo , Transdução de Sinais/genética
8.
Biomolecules ; 11(1)2021 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435477

RESUMO

The function of retinoic acid (RA) during limb development is still debated, as loss and gain of function studies led to opposite conclusions. With regard to limb initiation, genetic studies demonstrated that activation of FGF10 signaling is required for the emergence of limb buds from the trunk, with Tbx5 and RA signaling acting upstream in the forelimb field, whereas Tbx4 and Pitx1 act upstream in the hindlimb field. Early studies in chick embryos suggested that RA as well as Meis1 and Meis2 (Meis1/2) are required for subsequent proximodistal patterning of both forelimbs and hindlimbs, with RA diffusing from the trunk, functioning to activate Meis1/2 specifically in the proximal limb bud mesoderm. However, genetic loss of RA signaling does not result in loss of limb Meis1/2 expression and limb patterning is normal, although Meis1/2 expression is reduced in trunk somitic mesoderm. More recent studies demonstrated that global genetic loss of Meis1/2 results in a somite defect and failure of limb bud initiation. Other new studies reported that conditional genetic loss of Meis1/2 in the limb results in proximodistal patterning defects, and distal FGF8 signaling represses Meis1/2 to constrain its expression to the proximal limb. In this review, we hypothesize that RA and Meis1/2 both function in the trunk to initiate forelimb bud initiation, but that limb Meis1/2 expression is activated proximally by a factor other than RA and repressed distally by FGF8 to generate proximodistal patterning.


Assuntos
Extremidades/embriologia , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteína Meis1/genética , Transdução de Sinais , Tretinoína/metabolismo , Animais , Proteína Meis1/metabolismo
9.
PLoS Biol ; 18(5): e3000719, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32421711

RESUMO

Identification of target genes that mediate required functions downstream of transcription factors is hampered by the large number of genes whose expression changes when the factor is removed from a specific tissue and the numerous binding sites for the factor in the genome. Retinoic acid (RA) regulates transcription via RA receptors bound to RA response elements (RAREs) of which there are thousands in vertebrate genomes. Here, we combined chromatin immunoprecipitation sequencing (ChIP-seq) for epigenetic marks and RNA-seq on trunk tissue from wild-type and Aldh1a2-/- embryos lacking RA synthesis that exhibit body axis and forelimb defects. We identified a relatively small number of genes with altered expression when RA is missing that also have nearby RA-regulated deposition of histone H3 K27 acetylation (H3K27ac) (gene activation mark) or histone H3 K27 trimethylation (H3K27me3) (gene repression mark) associated with conserved RAREs, suggesting these genes function downstream of RA. RA-regulated epigenetic marks were identified near RA target genes already known to be required for body axis and limb formation, thus validating our approach; plus, many other candidate RA target genes were found. Nuclear receptor 2f1 (Nr2f1) and nuclear receptor 2f2 (Nr2f2) in addition to Meis homeobox 1 (Meis1) and Meis homeobox 2 (Meis2) gene family members were identified by our approach, and double knockouts of each family demonstrated previously unknown requirements for body axis and/or limb formation. A similar epigenetic approach can be used to determine the target genes for any transcriptional regulator for which a knockout is available.


Assuntos
Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Estudos de Associação Genética/métodos , Código das Histonas , Tretinoína/metabolismo , Animais , Sequência de Bases , Sequenciamento de Cromatina por Imunoprecipitação , Sequência Conservada , Epigênese Genética , Camundongos , Família Multigênica , Elementos de Resposta , Análise de Sequência de RNA , Fatores de Transcrição/metabolismo
10.
Nat Commun ; 11(1): 63, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31896743

RESUMO

Each vestibular sensory epithelium in the inner ear is divided morphologically and physiologically into two zones, called the striola and extrastriola in otolith organ maculae, and the central and peripheral zones in semicircular canal cristae. We found that formation of striolar/central zones during embryogenesis requires Cytochrome P450 26b1 (Cyp26b1)-mediated degradation of retinoic acid (RA). In Cyp26b1 conditional knockout mice, formation of striolar/central zones is compromised, such that they resemble extrastriolar/peripheral zones in multiple features. Mutants have deficient vestibular evoked potential (VsEP) responses to jerk stimuli, head tremor and deficits in balance beam tests that are consistent with abnormal vestibular input, but normal vestibulo-ocular reflexes and apparently normal motor performance during swimming. Thus, degradation of RA during embryogenesis is required for formation of highly specialized regions of the vestibular sensory epithelia with specific functions in detecting head motions.


Assuntos
Membrana dos Otólitos/embriologia , Ácido Retinoico 4 Hidroxilase/metabolismo , Tretinoína/metabolismo , Animais , Potenciais Evocados/genética , Potenciais Evocados/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Cabeça/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteopontina/metabolismo , Membrana dos Otólitos/citologia , Membrana dos Otólitos/metabolismo , Retinal Desidrogenase/genética , Retinal Desidrogenase/metabolismo , Ácido Retinoico 4 Hidroxilase/genética , Sáculo e Utrículo/citologia , Sáculo e Utrículo/embriologia , Tremor/genética , Tremor/fisiopatologia , Testes de Função Vestibular , Vestíbulo do Labirinto/embriologia , Vestíbulo do Labirinto/metabolismo
11.
Alcohol Alcohol ; 55(1): 11-19, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31825074

RESUMO

AIMS: It is still unclear which enzymes contribute to the adaptive enhancement of alcohol metabolism by chronic alcohol consumption (CAC). ADH1 (Class I) has the lowest Km for ethanol and the highest sensitivity for 4-methylpyrazole (4MP) among ADH isozymes, while ADH3 (Class III) has the highest Km and the lowest sensitivity. We investigated how these two major ADHs relate to the adaptive enhancement of alcohol metabolism. METHODS: Male mice with different ADH genotypes (WT, Adh1-/- and Adh3-/-) were subjected to CAC experiment using a 10% ethanol solution for 1 month. Alcohol elimination rate (AER) was measured after ethanol injection at a 4.0 g/kg dose. 4MP-sensitive and -insensitive AERs were measured by the simultaneous administration of 4MP at a dose of 0.5 mmol/kg in order to estimate ADH1 and non-ADH1 pathways. RESULTS: AER was enhanced by CAC in all ADH genotypes, especially more than twofold in Adh1-/- mice, with increasing ADH1 and/or ADH3 liver contents, but not CYP2E1 content. 4MP-sensitive AER was also increased by CAC in WT and Adh3-/- strains, which was greater in Adh3-/- than in WT mice. The sensitive AER was increased even in Adh1-/- mice probably due to the increase in ADH3, which is semi-sensitive for 4MP. 4MP-insensitive AER was also increased in WT and Adh1-/- by CAC, but not in Adh3-/- mice. CONCLUSION: ADH1 contributes to the enhancement of alcohol metabolism by CAC, particularly in the absence of ADH3. ADH3 also contributes to the enhancement as a non-ADH1 pathway, especially in the absence of ADH1.


Assuntos
Álcool Desidrogenase/fisiologia , Eliminação Renal/fisiologia , Álcool Desidrogenase/genética , Consumo de Bebidas Alcoólicas/metabolismo , Animais , Etanol/metabolismo , Fomepizol/farmacologia , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos , Eliminação Renal/efeitos dos fármacos
12.
Development ; 146(13)2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31273085

RESUMO

Retinoic acid (RA), a metabolite of retinol (vitamin A), functions as a ligand for nuclear RA receptors (RARs) that regulate development of chordate animals. RA-RARs can activate or repress transcription of key developmental genes. Genetic studies in mouse and zebrafish embryos that are deficient in RA-generating enzymes or RARs have been instrumental in identifying RA functions, revealing that RA signaling regulates development of many organs and tissues, including the body axis, spinal cord, forelimbs, heart, eye and reproductive tract. An understanding of the normal functions of RA signaling during development will guide efforts for use of RA as a therapeutic agent to improve human health. Here, we provide an overview of RA signaling and highlight its key functions during development.


Assuntos
Genes Controladores do Desenvolvimento , Receptores do Ácido Retinoico/fisiologia , Tretinoína/farmacologia , Tretinoína/fisiologia , Animais , Embrião de Mamíferos , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Genes Controladores do Desenvolvimento/efeitos dos fármacos , Genes Controladores do Desenvolvimento/genética , Humanos , Camundongos , Receptores do Ácido Retinoico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Tretinoína/metabolismo , Peixe-Zebra
13.
Nat Commun ; 10(1): 1796, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30996264

RESUMO

Metabolic reprogramming is an active regulator of stem cell fate choices, and successful stem cell differentiation in different compartments requires the induction of oxidative phosphorylation. However, the mechanisms that promote mitochondrial respiration during stem cell differentiation are poorly understood. Here we demonstrate that Stat3 promotes muscle stem cell myogenic lineage progression by stimulating mitochondrial respiration in mice. We identify Fam3a, a cytokine-like protein, as a major Stat3 downstream effector in muscle stem cells. We demonstrate that Fam3a is required for muscle stem cell commitment and skeletal muscle development. We show that myogenic cells secrete Fam3a, and exposure of Stat3-ablated muscle stem cells to recombinant Fam3a in vitro and in vivo rescues their defects in mitochondrial respiration and myogenic commitment. Together, these findings indicate that Fam3a is a Stat3-regulated secreted factor that promotes muscle stem cell oxidative metabolism and differentiation, and suggests that Fam3a is a potential tool to modulate cell fate choices.


Assuntos
Diferenciação Celular , Citocinas/fisiologia , Desenvolvimento Muscular/fisiologia , Mioblastos/fisiologia , Fator de Transcrição STAT3/fisiologia , Células-Tronco/fisiologia , Animais , Animais Recém-Nascidos , Linhagem da Célula/fisiologia , Células Cultivadas , Embrião de Mamíferos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Músculo Estriado/citologia , Músculo Estriado/crescimento & desenvolvimento , Fosforilação Oxidativa , Transdução de Sinais/fisiologia
15.
Dev Biol ; 441(1): 127-131, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29964026

RESUMO

In mouse, retinoic acid (RA) is required for the early phase of body axis extension controlled by a population of neuromesodermal progenitors (NMPs) in the trunk called expanding-NMPs, but not for the later phase of body axis extension controlled by a population of NMPs in the tail called depleting-NMPs. Recent observations suggest that zebrafish utilize depleting-NMPs but not expanding-NMPs for body axis extension. In zebrafish, a role for RA in body axis extension was not supported by previous studies on aldh1a2 (raldh2) mutants lacking RA synthesis. Here, by treating zebrafish embryos with an RA synthesis inhibitor, we also found that body axis extension and somitogenesis was not perturbed, although loss of pectoral fin and cardiac edema were observed consistent with previous studies. The conclusion that zebrafish diverges from mouse in not requiring RA for body axis extension is consistent with zebrafish lacking early expanding-NMPs to generate the trunk. We suggest that RA control of body axis extension was added to higher vertebrates during evolution of expanding-NMPs.


Assuntos
Embrião de Mamíferos/embriologia , Embrião não Mamífero/embriologia , Mesoderma/embriologia , Células-Tronco Neurais/metabolismo , Tretinoína/metabolismo , Peixe-Zebra/embriologia , Animais , Embrião de Mamíferos/citologia , Embrião não Mamífero/citologia , Mesoderma/citologia , Camundongos , Células-Tronco Neurais/citologia , Especificidade da Espécie
16.
Nat Neurosci ; 21(8): 1139, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29880878

RESUMO

In the version of this article initially published online, there were errors in URLs for www.southernbiotech.com, appearing in Methods sections "m6A dot-blot" and "Western blot analysis." The first two URLs should be https://www.southernbiotech.com/?catno=4030-05&type=Polyclonal#&panel1-1 and the third should be https://www.southernbiotech.com/?catno=6170-05&type=Polyclonal. In addition, some Methods URLs for bioz.com, www.abcam.com and www.sysy.com were printed correctly but not properly linked. The errors have been corrected in the PDF and HTML versions of this article.

17.
Cell Rep ; 23(11): 3146-3151, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29898387

RESUMO

A standard approach in the identification of transcriptional enhancers is the use of transgenic animals carrying DNA elements joined to reporter genes inserted randomly in the genome. We examined elements near Tbx5, a gene required for forelimb development in humans and other vertebrates. Previous transgenic studies reported a mammalian Tbx5 forelimb enhancer located in intron 2 containing a putative retinoic acid response element and a zebrafish tbx5a forelimb (pectoral fin) enhancer located downstream that is conserved from fish to mammals. We used CRISPR/Cas9 gene editing to knockout the endogenous elements and unexpectedly found that deletion of the intron 2 and downstream elements, either singly or together in double knockouts, resulted in no effect on forelimb development. Our findings show that reporter transgenes may not identify endogenous enhancers and that in vivo genetic loss-of-function studies are required, such as CRISPR/Cas9, which is similar in effort to production of animals carrying reporter transgenes.


Assuntos
Elementos Facilitadores Genéticos/genética , Membro Anterior/crescimento & desenvolvimento , Edição de Genes , Proteínas com Domínio T/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados/metabolismo , Sistemas CRISPR-Cas/genética , Membro Anterior/metabolismo , Íntrons , Camundongos , Peixe-Zebra/metabolismo
18.
Nat Neurosci ; 21(2): 195-206, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29335608

RESUMO

Internal N6-methyladenosine (m6A) modification is widespread in messenger RNAs (mRNAs) and is catalyzed by heterodimers of methyltransferase-like protein 3 (Mettl3) and Mettl14. To understand the role of m6A in development, we deleted Mettl14 in embryonic neural stem cells (NSCs) in a mouse model. Phenotypically, NSCs lacking Mettl14 displayed markedly decreased proliferation and premature differentiation, suggesting that m6A modification enhances NSC self-renewal. Decreases in the NSC pool led to a decreased number of late-born neurons during cortical neurogenesis. Mechanistically, we discovered a genome-wide increase in specific histone modifications in Mettl14 knockout versus control NSCs. These changes correlated with altered gene expression and observed cellular phenotypes, suggesting functional significance of altered histone modifications in knockout cells. Finally, we found that m6A regulates histone modification in part by destabilizing transcripts that encode histone-modifying enzymes. Our results suggest an essential role for m6A in development and reveal m6A-regulated histone modifications as a previously unknown mechanism of gene regulation in mammalian cells.


Assuntos
Autorrenovação Celular/genética , Desoxiadenosinas/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Histonas/metabolismo , Células-Tronco Neurais/fisiologia , RNA Mensageiro/metabolismo , Animais , Animais Recém-Nascidos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Autorrenovação Celular/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Dactinomicina/farmacologia , Desoxiadenosinas/metabolismo , Embrião de Mamíferos , Feminino , Fibronectinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Masculino , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Neurogênese/fisiologia , Fator de Transcrição PAX6/genética , Fator de Transcrição PAX6/metabolismo , Inibidores da Síntese de Proteínas/farmacologia
20.
Genes Dev ; 31(13): 1325-1338, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28794185

RESUMO

Deciphering the fundamental mechanisms controlling cardiac specification is critical for our understanding of how heart formation is initiated during embryonic development and for applying stem cell biology to regenerative medicine and disease modeling. Using systematic and unbiased functional screening approaches, we discovered that the Id family of helix-loop-helix proteins is both necessary and sufficient to direct cardiac mesoderm formation in frog embryos and human embryonic stem cells. Mechanistically, Id proteins specify cardiac cell fate by repressing two inhibitors of cardiogenic mesoderm formation-Tcf3 and Foxa2-and activating inducers Evx1, Grrp1, and Mesp1. Most importantly, CRISPR/Cas9-mediated ablation of the entire Id (Id1-4) family in mouse embryos leads to failure of anterior cardiac progenitor specification and the development of heartless embryos. Thus, Id proteins play a central and evolutionarily conserved role during heart formation and provide a novel means to efficiently produce cardiovascular progenitors for regenerative medicine and drug discovery applications.


Assuntos
Linhagem da Célula/genética , Coração/embriologia , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Organogênese/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Linhagem Celular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Edição de Genes , Regulação da Expressão Gênica no Desenvolvimento/genética , Cardiopatias Congênitas/genética , Humanos , Mesoderma/citologia , Mesoderma/fisiologia , Camundongos , Mutação , Sementes , Xenopus laevis/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA